At LP2N
Cold Atoms in Bordeaux
The experiment BIARO (French acronym for Bose-Einstein Condensate and Atom Interferometry in a High Finesse Resonator) produces Bose-Einstein condensed atomic samples by evaporatively cooling rubidium 87 atoms in a bow-tie cavity at 1560 nm radiation. The trapping and cooling can be realized on the fundamental cavity mode, which produces a single minimum of the potential, or on the higher transversal modes, which generates 1D, 2D and 3D arrays of minima. Moreover, as 780 nm light is also resonant with the cavity and the atomic transition, BIARO can easily realize the rapidly growing regime of cavity QED with degenerate gases, allowing for the exploration of atom-field entanglement, photon mediated long-range interactions, and phonon-like excitations with controllable properties. Recently self-emergence phenomena, like glassiness and crystallization, have been extensively studied using pumped condensed atomic sampled, coupled to a high finesse optical resonator [1]. So far these experiments have been realized in standing wave cavities, which imposes the resonator geometry to the lattice being formed by the atoms and the light scattered into the cavity modes. Adopting degenerate multimode cavities opens new horizons to study order emergence effects, where compliant lattices between atoms and light would show a dynamical evolution [2].
[1] K. Baumann, et al., Nature 264, 1301 (2010)
[2] S. Gopalakrishnan, et al., Nature Physics 5, 845 (2009)
BIARO
Latest News
People
BIARO - Team Members
Philippe Bouyer
philippe.bouyer@institutoptique.fr
Andrea Bertoldi
andrea.bertoldi@institutoptique.fr
Post Docs
Devang Naik
devang.naik@institutoptique.fr
Phd and Master Students
Hodei Eneriz
hodei.eneriz-imaz@institutoptique.fr
Max Carey
max.carey@soton.ac.uk
Past students
Grigor Kuyumjyang PhD 2014-17
Etienne Cantin PhD 2012-15
Ralf Kohlhaas PhD 2011-14, now at SRON Netherlands Institute for Space Research
Thomas Vanderbruggen PhD 2009-2012, now at Koheron (Paris)
Simon Bernon PhD 2008-2011, now Associate Professor at LP2N
Gabriel Marty M1 2013
Dorian Grosso M1 2011
Thierry Botter M1 2008 now PhD at University of California, Berkeley US
Publications
-
Bose-Einstein condensate array in a malleable optical trap formed in a traveling wave cavity, D.S. Naik, G. Kuyumjyan, D. Pandey, P. Bouyer, A. Bertoldi, QUANTUM SCIENCE AND TECHNOLOGY Volume: 3, Issue: 4 (2018) arXiv:1712.06491
-
Inertial quantum sensors using light and matter, B. Barrett, A. Bertoldi and P. Bouyer, Phys. Scr. 91, 053006 (2016). arXiv:1603.03246
-
Phase locking a clock oscillator to a coherent atomic ensemble, R. Kohlhaas, A. Bertoldi, E. Cantin, A. Aspect, A. Landragin, and P. Bouyer, Phys. Rev. X 5, 021011 (2015). arXiv:1501.03709
-
Feedback control of coherent spin states using weak nondestructive measurements, T. Vanderbruggen, R. Kohlhaas, A. Bertoldi, E. Cantin, A. Landragin, and P. Bouyer, Phys. Rev. A 89, 063619 (2014). arXiv:1405.4749
-
Feedback control of trapped coherent atomic ensembles, T. Vanderbruggen, R. Kohlhaas, A. Bertoldi, S. Bernon, A. Aspect, A. Landragin, and P. Bouyer, Phys. Rev. Lett. 110, 210503 (2013). arXiv:1207.3203
-
Robust laser frequency stabilization by serrodyne modulation, R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, Opt. Lett. 37, 1005 (2012). arXiv:1109.1899
-
Heterodyne non-demolition measurements on cold atomic samples: towards the preparation of non-classical states for atom interferometry, S. Bernon, T. Vanderbruggen, R. Kohlhaas, A. Bertoldi, A. Landragin, and P. Bouyer, New J. Phys. 13, 065021 (2011). arXiv:1103.1722
-
Spin-squeezing and Dicke-state preparation by heterodyne measurement, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, Phys. Rev. A 83, 013821 (2011). arXiv:1003.0157
-
In situ characterization of an optical cavity using atomic light shift, A. Bertoldi, S. Bernon, T. Vanderbruggen, A. Landragin, and P. Bouyer, Opt. Lett. 35, 3769 (2010). arXiv:1007.2721